The Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in C. elegans.

نویسندگان

  • Andreas Steimel
  • Lianna Wong
  • Elvis Huarcaya Najarro
  • Brian D Ackley
  • Gian Garriga
  • Harald Hutter
چکیده

Development of a functional neuronal network during embryogenesis begins with pioneer axons creating a scaffold along which later-outgrowing axons extend. The molecular mechanism used by these follower axons to navigate along pre-existing axons remains poorly understood. We isolated loss-of-function alleles of fmi-1, which caused strong axon navigation defects of pioneer and follower axons in the ventral nerve cord (VNC) of C. elegans. Notably follower axons, which exclusively depend on pioneer axons for correct navigation, frequently separated from the pioneer. fmi-1 is the sole C. elegans ortholog of Drosophila flamingo and vertebrate Celsr genes, and this phenotype defines a new role for this important molecule in follower axon navigation. FMI-1 has a unique and strikingly conserved structure with cadherin and C-terminal G-protein coupled receptor domains and could mediate cell-cell adhesion and signaling functions. We found that follower axon navigation depended on the extracellular but not on the intracellular domain, suggesting that FMI-1 mediates primarily adhesion between pioneer and follower axons. By contrast, pioneer axon navigation required the intracellular domain, suggesting that FMI-1 acts as receptor transducing a signal in this case. Our findings indicate that FMI-1 is a cell-type dependent axon guidance factor with different domain requirements for its different functions in pioneers and followers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons

During development, multiple environmental cues, e.g., growth factors, cell adhesion molecules, etc., interact to influence the pattern of outgrowth of axons and dendrites in a cell-specific fashion. As a result, individual neurons may receive similar signals, but make unique choices, leading to distinct wiring within the nervous system. C. elegans has been useful in identifying molecular cues ...

متن کامل

Cadherin complexity: recent insights into cadherin superfamily function in C. elegans.

Cadherin superfamily proteins mediate cell-cell adhesion during development. The C. elegans embryo is a powerful system for analyzing how cadherins function in highly stereotyped morphogenetic events. In the embryo, the classical cadherin HMR-1 acts along with the Rac pathway and SAX-7/L1CAM during gastrulation. As adherens junctions mature, PAR complex proteins differentially regulate cadherin...

متن کامل

Extracellular cues and pioneers act together to guide axons in the ventral cord of C. elegans.

The ventral cord is the major longitudinal axon tract in C. elegans containing essential components of the motor circuit. Previous studies have shown that axons grow out sequentially and that there is a single pioneer for the right axon tract which is important for the correct outgrowth of follower axons. Here, the dependencies between early and late outgrowing axons in the ventral cord were st...

متن کامل

Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development.

In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it...

متن کامل

The cadherin superfamily.

The cadherins are a major class of membrane proteins with prominent roles in cell adhesion, and the regulation of tissue organisation and morphogenesis. The C. elegans genome encodes 13 cadherins, including representatives of the major cadherin sub-types that are conserved between insects and vertebrates: the so-called classic, Fat-like, Flamingo and calsyntenin classes. The function of most of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 21  شماره 

صفحات  -

تاریخ انتشار 2010